Full Text

Turn on search term navigation

© 2021 Hend Alrasheed. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Keyword extraction refers to the process of detecting the most relevant terms and expressions in a given text in a timely manner. In the information explosion era, keyword extraction has attracted increasing attention. The importance of keyword extraction in text summarization, text comparisons, and document categorization has led to an emphasis on graph-based keyword extraction techniques because they can capture more structural information compared to other classic text analysis methods. In this paper, we propose a simple unsupervised text mining approach that aims to extract a set of keywords from a given text and analyze its topic diversity using graph analysis tools. Initially, the text is represented as a directed graph using synonym relationships. Then, community detection and other measures are used to identify keywords in the text. The set of extracted keywords is used to assess topic diversity within the text and analyze its sentiment. The proposed approach relies on grouping semantically similar candidate words. This approach ensures that the set of extracted keywords is comprehensive. Differing from other graph-based keyword extraction approaches, the proposed method does not require user parameters during graph construction and word scoring. The proposed approach achieved significant results compared to other keyword extraction techniques.

Details

Title
Word synonym relationships for text analysis: A graph-based approach
Author
Alrasheed, Hend
First page
e0255127
Section
Research Article
Publication year
2021
Publication date
Jul 2021
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2555623081
Copyright
© 2021 Hend Alrasheed. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.