Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, the formation of rhombic ZnO microrods surrounded by ZnO nanorods was realized on the surfaces of zinc foils using a hydrothermal method. The photocatalytic degradation of Rhodamine B solution was used to test the photocatalytic performance of the prepared samples. Compared with the rhombic Zn(OH)F and ZnO microrods grown on zinc foils, the hierarchical micro/nanostructures formed by ZnO nanorods surrounding the surfaces of rhombic ZnO microrods have better photocatalytic performance. The experimental results are mainly due to the fact that the hierarchical ZnO micro/nanostructures formed by ZnO nanorods surrounding the surface of the rhombic ZnO microrods have a larger surface area compared with the rhombic Zn(OH)F and ZnO microrods. More importantly, the photocatalytic circulation experiments indicate that ZnO nanorods grown on rhombic ZnO microrods can be recycled and have a relatively stable photocatalytic performance.

Details

Title
ZnO Nanorods Grown on Rhombic ZnO Microrods for Enhanced Photocatalytic Activity
Author
Zhu, Yufu 1 ; Yan, Jiaying 1 ; Zhou, Lei 2 ; Feng, Liangdong 3 

 Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical & Material Engineering, Huaiyin Institute of Technology, Huaian 223003, China 
 Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian 223003, China 
 Department of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China 
First page
3085
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2711357278
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.