Abstract

Motivation: Most genetic variants implicated in complex diseases by genome-wide association studies (GWAS) are non-coding, making it challenging to understand the causative genes involved in disease. Integrating external information such as quantitative trait locus (QTL) mapping of molecular traits (e.g., expression, methylation) is a powerful approach to identify the subset of GWAS signals explained by regulatory effects. In particular, expression QTLs (eQTLs) help pinpoint the responsible gene among the GWAS regions that harbor many genes, while methylation QTLs (mQTLs) help identify the epigenetic mechanisms that impact gene expression which in turn affect disease risk. In this work we propose multiple-trait-coloc (moloc), a Bayesian statistical framework that integrates GWAS summary data with multiple molecular QTL data to identify regulatory effects at GWAS risk loci. Results: We applied moloc to schizophrenia (SCZ) and eQTL/mQTL data derived from human brain tissue and identified 52 candidate genes that influence SCZ through methylation. Our method can be applied to any GWAS and relevant functional data to help prioritize disease associated genes. Availability: moloc is available for download as an R package (https://github.com/clagiamba/moloc). We also developed a web site to visualize the biological findings (icahn.mssm.edu/moloc). The browser allows searches by gene, methylation probe, and scenario of interest.

Details

Title
A Bayesian Framework for Multiple Trait Colocalization from Summary Association Statistics
Author
Giambartolomei, Claudia; Liu, Jimmy Zhenli; Zhang, Wen; Hauberg, Mads; Shi, Huwenbo; Boocock, James; Pickrell, Joe; Jaffe, Andrew E; Consortium, Commonmind; Pasaniuc, Bogdan; Roussos, Panos
University/institution
Cold Spring Harbor Laboratory Press
Section
New Results
Publication year
2018
Publication date
Feb 13, 2018
Publisher
Cold Spring Harbor Laboratory Press
Source type
Working Paper
Language of publication
English
ProQuest document ID
2071179409
Copyright
�� 2018. This article is published under http://creativecommons.org/licenses/by/4.0/ (���the License���). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.