It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Learning low-dimensional representations (embeddings) of nodes in large graphs is key to applying machine learning on massive biological networks. Node2vec is the most widely used method for node embedding. However, its original Python and C++ implementations scale poorly with network density, failing for dense biological networks with hundreds of millions of edges. We have developed PecanPy, a new Python implementation of node2vec that uses cache-optimized compact graph data structures and precomputing/parallelization to result in fast, high-quality node embeddings for biological networks of all sizes and densities. PecanPy software and documentation are available at https://github.com/krishnanlab/pecanpy.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
* https://github.com/krishnanlab/pecanpy
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





